Using GPS Signals to Measure Electron Density in the Ionosphere

by Rick Peterson, WA6NUT

April 2022

Using GPS Signals to Measure Electron Density in the lonosphere

Here's a highly simplified explanation of how electron density can be calculated from measured delays in the GPS signal. Figure 1 shows how measured delays for four signal paths are used to find the electron densities $Ne_1 - Ne_4$ in four regions of the ionosphere.

Figure 1: 2-D model of signal paths from four GPS satellites to a ground-based receiver.

Assumptions are:

Geometry for signal paths and ionospheric structure as shown in Figure 1 Signal delay proportional to distance within given Ne for given path No delay outside the model structure Delay for each signal path is found by measurements M_1 to M_4 . The total electron content STEC is calculated from the delay measurements:

 $\begin{array}{lll} M_{1} \rightarrow & STEC_{1} = 4.583 \ x \ 10^{16} \ electrons \\ M_{2} \rightarrow & STEC_{2} = 4.124 \ x \ 10^{16} \ electrons \\ M_{3} \rightarrow & STEC_{3} = 6.186 \ x \ 10^{16} \ electrons \\ M_{4} \rightarrow & STEC_{4} = 6.666 \ x \ 10^{16} \ electrons \end{array}$

Because signal delay is proportional to the length of the path with a given electron density Ne, we obtain:

$STEC_1 = L_1 x$	K Ne₁	+ L ₂ x Ne ₃		(Path 1)
$STEC_2 = L_3 x$	K Ne₁	+ L4 x Ne3		(Path 2)
STEC ₃ =	L ₅ x Ne ₂		+ L ₆ x Ne ₄	(Path 3)
$STEC_4 =$	L7 x Ne2		+ L ₈ x Ne ₄	(Path 4)

Using some elementary geometry we can calculate:

 $L_1 = L_7 = 83.333 \text{ km}$ $L_2 = L_8 = 125 \text{ km}$ $L_3 = L_5 = 103.1 \text{ km}$ $L_4 = L_6 = 103.1 \text{ km}$

Converting km to meters and substituting, we obtain:

4.583 x 10 ¹⁶ = 0).8333 x 10⁵ x Ne₁	+ 1.25 :	x 10⁵ x Ne₃	
4.124 x 10 ¹⁶ =	1.031 x 10 ⁵ x Ne₁	+ 1.031 :	x 10⁵ x Ne₃	
$6.186 \times 10^{16} =$	1.031 x	(10 ⁵ x Ne₂	+ 1.031 x	x 10 ⁵ x Ne ₄
6.666 x 10 ¹⁶ =	0.8333 x	(10 ⁵ x Ne ₂	+ 1.25 x	x 10 ⁵ x Ne ₄

Solving, we get:

Ne₁ = 1 x 10¹¹ electrons/m³ Ne₂ = 2 x 10¹¹ electrons/m³ Ne₃ = 3 x 10¹¹ electrons/m³ Ne₄ = 4 x 10¹¹ electrons/m³

From these values we can obtain the vertical electron density profiles shown in Figure 2. Two profiles are shown: one for the region -200 km < X < 0 km and the other for the region 0 km < X < +200 km.

Figure 2: Vertical electron density profiles for 2 regions: -200 km < X < 0 km and 0 km < X < +200 km

Perhaps this exercise has piqued your interest in the ionosphere, its measurement, and radio propagation. This link gives an overview:

https://space.fmi.fi/MIRACLE/Geotrim/Theory.html

With more detail here:

https://www.researchgate.net/publication/279412186_Medium-scale_4-D_ionospheric_tomography_using_a_dense_GPS_network Click here: https://www.researchgate.net/publication/279412186_Medium-scale_4-D_ionospheric_tomography_using_a_dense_GPS_network

Thanks to the GNSS Research Group at the Royal Observatory of Belgium whose animated website (http://gnss.be/ionosphere_tutorial.php#x2-70000) inspired me to put together this exercise in applied math – R.R.P.

Last revised 4/1/22